Stochastic Multi-Objective Optimal Reactive Power Dispatch with the Integration of Wind and Solar Generation

Author:

Bhurt Faraz1,Ali Aamir1,Keerio Muhammad U.1,Abbas Ghulam2ORCID,Ahmed Zahoor3,Mugheri Noor H.1,Kim Yun-Su4ORCID

Affiliation:

1. Department of Electrical Engineering, Quaid-e-Awam University of Engineering Science and Technology, Nawabshah 67450, Sindh, Pakistan

2. School of Electrical Engineering, Southeast University, Nanjing 210096, China

3. Department of Electrical Engineering, Balochistan University of Engineering and Technology, Khuzdar 89100, Balochistan, Pakistan

4. Graduate School of Energy Convergence, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea

Abstract

The exponential growth of unpredictable renewable power production sources in the power grid results in difficult-to-regulate reactive power. The ultimate goal of optimal reactive power dispatch (ORPD) is to find the optimal voltage level of all the generators, the transformer tap ratio, and the MVAR injection of shunt VAR compensators (SVC). More realistically, the ORPD problem is a nonlinear multi-objective optimization problem. Therefore, in this paper, the multi-objective ORPD problem is formulated and solved considering the simultaneous minimization of the active power loss, voltage deviation, emission, and the operating cost of renewable and thermal generators. Usually, renewable power generators such as wind and solar are uncertain; therefore, Weibull and lognormal probability distribution functions are considered to model wind and solar power, respectively. Due to the unavailability and uncertainty of wind and solar power, appropriate PDFs have been used to generate 1000 scenarios with the help of Monte Carlo simulation techniques. Practically, it is not possible to solve the problem considering all the scenarios. Therefore, the scenario reduction technique based on the distance metric is applied to select the 24 representative scenarios to reduce the size of the problem. Moreover, the efficient non-dominated sorting genetic algorithm II-based bidirectional co-evolutionary algorithm (BiCo), along with the constraint domination principle, is adopted to solve the multi-objective ORPD problem. Furthermore, a modified IEEE standard 30-bus system is employed to show the performance and superiority of the proposed algorithm. Simulation results indicate that the proposed algorithm finds uniformly distributed and near-global final non-dominated solutions compared to the recently available state-of-the-art multi-objective algorithms in the literature.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3