A Novel Stochastic Optimizer Solving Optimal Reactive Power Dispatch Problem Considering Renewable Energy Resources

Author:

Ali Mohammed Hamouda1ORCID,Soliman Ahmed Mohammed Attiya1ORCID,Abdeen Mohamed1,Kandil Tarek2ORCID,Abdelaziz Almoataz Y.3ORCID,El-Shahat Adel4ORCID

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering, Al-Azhar University, Cairo 11751, Egypt

2. School of Engineering and Technology, Western Carolina University, Cullowhee, NC 28723, USA

3. Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt

4. Energy Technology Program, School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA

Abstract

Optimal Reactive Power Dispatch (ORPD is thought of as a noncontinuous, nonlinear global optimization problem. Within the system’s constraints, the ORPD manages to accomplish the reactive power flow. Due to its more intricate linkage of variables, the reactive power issue is more challenging to resolve than the optimum power flow issue. With the existence of renewable energy resources (RERs), solving the ORPD problem to attain the most stable and secure system condition has become a more challenging task. The goal of this article is to solve the objective function of ORPD combined with RERs using a metaheuristic novel optimizer named the African Vultures Optimization Algorithm abbreviated by (AVOA), where the formulation of the ORPD issue including minimization of three single objective functions as follows, voltage deviation, system operating cost, and real power loss, is introduced and also transmission power loss minimization is embraced with the simultaneous incorporation of the optimal renewable energy resources (RERs). Where the ORPD problem complexity grows exponentially with a mixture of continuous and discrete control variables, two distinct continuous and discrete types of optimization variables are considered, and the proposed single objective functions that meet different operating constraints are then transformed into a coefficient multi-objective ORPD problem and elucidated using the weighted sum approach. To validate the suggested algorithm’s effectiveness in addressing the ORPD issue, it is evaluated on three standard IEEE networks: the IEEE-30 bus small-scale network, the IEEE-57 bus medium-scale network, and the IEEE-118 bus large-scale network using different scenarios and the outcomes are compared to these other popular optimization techniques. The findings show that the suggested AVOA algorithm provides an efficient and sturdy high-quality solution for tackling ORPD situations and vastly enhances the overall system performance of power at all scales.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3