A Theoretical Open Architecture Framework and Technology Stack for Digital Twins in Energy Sector Applications

Author:

Gourisetti Sri Nikhil Gupta1ORCID,Bhadra Sraddhanjoli1,Sebastian-Cardenas David Jonathan1,Touhiduzzaman Md1,Ahmed Osman1

Affiliation:

1. Pacific Northwest National Laboratory, Richland, WA 99352, USA

Abstract

Digital twin is often viewed as a technology that can assist engineers and researchers make data-driven system and network-level decisions. Across the scientific literature, digital twins have been consistently theorized as a strong solution to facilitate proactive discovery of system failures, system and network efficiency improvement, system and network operation optimization, among others. With their strong affinity to the industrial metaverse concept, digital twins have the potential to offer high-value propositions that are unique to the energy sector stakeholders to realize the true potential of physical and digital convergence and pertinent sustainability goals. Although the technology has been known for a long time in theory, its practical real-world applications have been so far limited, nevertheless with tremendous growth projections. In the energy sector, there have been theoretical and lab-level experimental analysis of digital twins but few of those experiments resulted in real-world deployments. There may be many contributing factors to any friction associated with real-world scalable deployment in the energy sector such as cost, regulatory, and compliance requirements, and measurable and comparable methods to evaluate performance and return on investment. Those factors can be potentially addressed if the digital twin applications are built on the foundations of a scalable and interoperable framework that can drive a digital twin application across the project lifecycle: from ideation to theoretical deep dive to proof of concept to large-scale experiment to real-world deployment at scale. This paper is an attempt to define a digital twin open architecture framework that comprises a digital twin technology stack (D-Arc) coupled with information flow, sequence, and object diagrams. Those artifacts can be used by energy sector engineers and researchers to use any digital twin platform to drive research and engineering. This paper also provides critical details related to cybersecurity aspects, data management processes, and relevant energy sector use cases.

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3