LSTM-Based Model for Predicting Inland River Runoff in Arid Region: A Case Study on Yarkant River, Northwest China

Author:

Li JiaxinORCID,Qian Kaixuan,Liu Yuan,Yan WeiORCID,Yang Xiuyun,Luo GepingORCID,Ma XiaofeiORCID

Abstract

Inland river runoff variations in arid regions play a decisive role in maintaining regional ecological stability. Observation data of inland river runoff in arid regions have short time series and imperfect attributes due to limitations in the terrain environment and other factors. These shortages not only restrict the accurate simulation of inland river runoff in arid regions significantly, but also influence scientific evaluation and management of the water resources of a basin in arid regions. In recent years, research and applications of machine learning and in-depth learning technologies in the hydrological field have been developing gradually around the world. However, the simulation accuracy is low, and it often has over-fitting phenomenon in previous studies due to influences of complicated characteristics such as “unsteady runoff”. Fortunately, the circulation layer of Long-Short Term Memory (LSTM) can explore time series information of runoffs deeply to avoid long-term dependence problems. In this study, the LSTM algorithm was introduced and improved based on the in-depth learning theory of artificial intelligence and relevant meteorological factors that were monitored by coupling runoffs. The runoff data of the Yarkant River was chosen for training and test of the LSTM model. The results demonstrated that Mean Absolute Error (MAE) and Root Mean Square error (RMSE) of the LSTM model were 3.633 and 7.337, respectively. This indicates that the prediction effect and accuracy of the LSTM model were significantly better than those of the convolution neural network (CNN), Decision Tree Regressor (DTR) and Random Forest (RF). Comparison of accuracy of different models made the research reliable. Hence, time series data was converted into a problem of supervised learning through LSTM in the present study. The improved LSTM model solved prediction difficulties in runoff data to some extent and it applied to hydrological simulation in arid regions under several climate scenarios. It not only decreased runoff prediction uncertainty brought by heterogeneity of climate models and increased inland river runoff prediction accuracy in arid regions, but also provided references to basin water resource management in arid regions. In particular, the LSTM model provides an effective solution to runoff simulation in regions with limited data.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

The Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3