Deep learning algorithms and their fuzzy extensions for streamflow prediction in climate change framework

Author:

Vogeti Rishith Kumar1ORCID,Jauhari Rahul2,Mishra Bhavesh Rahul3,Raju K. Srinivasa1,Nagesh Kumar D.4

Affiliation:

1. a Department of Civil Engineering, BITS Pilani Hyderabad Campus, Hyderabad, India

2. b Department of Computer Science and Information Systems, BITS Pilani Hyderabad Campus, Hyderabad, India

3. c Department of Electrical and Electronics Engineering, BITS Pilani Hyderabad Campus, Hyderabad, India

4. d Department of Civil Engineering, Indian Institute of Science, Bangalore, India

Abstract

Abstract The present study analyzes the capability of convolutional neural network (CNN), long short-term memory (LSTM), CNN-LSTM, fuzzy CNN, fuzzy LSTM, and fuzzy CNN-LSTM to mimic streamflow for Lower Godavari Basin, India. Kling–Gupta efficiency (KGE) was used to evaluate these algorithms. Fuzzy-based deep learning algorithms have shown significant improvement over classical ones, among which fuzzy CNN-LSTM is the best. Thus, it is further considered for streamflow projections in a climate change context for four-time horizons using four shared socioeconomic pathways (SSPs). Average streamflow in 2041–2060, 2061–2080, and 2081–2090 are compared to that of 2021–2040 and it changed by +3.59, +7.90, and +12.36% for SSP126; +3.62, +8.28, and +12.96% for SSP245; +0.65, −0.01, and −0.02% for SSP370; +0.02, +0.71, and +0.06% for SSP585. In addition, two non-parametric tests, namely, Mann–Kendall and Pettitt were conducted to ascertain the trend and change point of the projected streamflow. Results indicate that fuzzy CNN-LSTM provides a more precise prediction than others. The identified variations in streamflow across different SSPs facilitate valuable insights for policymakers and relevant stakeholders. It also paves the way for adaptive decision-making.

Funder

CSIR, New Delhi

Publisher

IWA Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3