Synthesis and Morphological Control of VO2 Nanostructures via a One-Step Hydrothermal Method

Author:

Karahan OzlemORCID,Tufani Ali,Unal SerkanORCID,Misirlioglu I. Burc,Menceloglu Yusuf Z.,Sendur KursatORCID

Abstract

The morphology of nanostructures is a vital parameter to consider in components comprised of materials exhibiting specific functionalities. The number of process steps and the need for high temperatures can often be a limiting factor when targeting a specific morphology. Here, we demonstrate a repeatable synthesis of different morphologies of a highly crystalline monoclinic phase of vanadium dioxide (VO2(M)) using a one-step hydrothermal method. By adjusting the synthesis parameters, such as pH, temperature, and reducing agent concentration in the precursor, VO2 nanostructures with high uniformity and crystallinity are achieved. Some of these morphologies were obtained via the choice of the reducing agent that allowed us to skip the annealing step. Our results indicate that the morphologies of the nanostructures are very sensitive to the hydrazine hydrate (N2H4.H2O) concentration. Another reducing agent, dodecylamine, was used to achieve well-organized and high-quality VO2(M) nanotubes. Differential scanning calorimetry (DSC) experiments revealed that all samples display the monoclinic-to-tetragonal structural transition (MTST) regardless of the morphology, albeit at different temperatures that can be interpreted as the variations in overheating and undercooling limits. VO2(M) structures with a higher surface to volume ratio exhibit a higher overheating limit than those with low ratios.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3