A Self-Adaptive Progressive Support Selection Scheme for Collaborative Wideband Spectrum Sensing

Author:

Hu ZhuhuaORCID,Bai Yong,Huang Mengxing,Xie Mingshan,Zhao Yaochi

Abstract

The sampling rate of wideband spectrum sensing for sparse signals can be reduced by sub-Nyquist sampling with a Modulated Wideband Converter (MWC). In collaborative spectrum sensing, the fusion center recovers the spectral support from observation and measurement matrices reported by a network of CRs, to improve the precision of spectrum sensing. However, the MWC has a very high hardware complexity due to its parallel structure; it sets a fixed threshold for a decision without considering the impact of noise intensity, and needs a priori information of signal sparsity order for signal support recovery. To address these shortcomings, we propose a progressive support selection based self-adaptive distributed MWC sensing scheme (PSS-SaDMWC). In the proposed scheme, the parallel hardware sensing channels are scattered on secondary users (SUs), and the PSS-SaDMWC scheme takes sparsity order estimation, noise intensity, and transmission loss into account in the fusion center. More importantly, the proposed scheme uses a support selection strategy based on a progressive operation to reduce missed detection probability under low SNR levels. Numerical simulations demonstrate that, compared with the traditional support selection schemes, our proposed scheme can achieve a higher support recovery success rate, lower sampling rate, and stronger time-varying support recovery ability without increasing hardware complexity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BRD_ESRNet and SRS-Based Channel Estimation;Journal of Electrical and Computer Engineering;2023-10-07

2. TFF_aDCNN: A Pre-Trained Base Model for Intelligent Wideband Spectrum Sensing;IEEE Transactions on Vehicular Technology;2023-10

3. A Survey on Spectrum Sensing and Learning Technologies for 6G;IEICE Transactions on Communications;2021-10-01

4. An Active and Passive Reputation Method for Secure Wideband Spectrum Sensing Based on Blockchain;Electronics;2021-06-04

5. Hardware Sharing for Channel Interleavers in 5G NR Standard;Security and Communication Networks;2021-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3