BRD_ESRNet and SRS-Based Channel Estimation

Author:

Yang Rifei1,Yao Guohua1,Hu Zhuhua1ORCID

Affiliation:

1. School of Information and Communication Engineering, Hainan University, Haikou, China

Abstract

In wireless communication, the channel function estimated commonly has errors due to the influence of noise, so traditional channel estimation methods cannot accurately estimate the real channel function. Aiming at this problem, we propose a channel estimation method that combines sounding reference signal (SRS) remapping with the deep-learning network BRD_ESRNet. BRD_ESRNet consists of image denoising using a deep convolutional neural network with batch renormalization (BRDNet) and an expanded superresolution convolutional neural network (ESRCNN). At the transmitter side, we first map the SRS into four-box structures, and then, the four-box structures are scattered distribution throughout the time-frequency resource block. At the receiver side, we first perform the modified least squares (LS) estimation based on the four-box structure and place the result into the top-left resource unit of the four box. Then, we perform linear interpolation for the whole resource block. Finally, we equate the estimated channel matrix to a low-resolution image containing noise and input it to BRD_ESRNet. Thus, we obtain data with high resolution and achieve the purpose of reducing the estimation error of the channel function. The experimental results show that the proposed method in this paper has a significant improvement in performance compared to the methods of Soltani et al. and Nithya et al. In this paper, the methods of Soltani et al. and Nithya et al. are referred to as methods 1 and 2, respectively.

Funder

Major Science and Technology Project of Hainan Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3