Assessing Crop Water Productivity under Different Irrigation Scenarios in the Mid–Atlantic Region

Author:

Paul ManashiORCID,Negahban-Azar Masoud,Shirmohammadi Adel

Abstract

The continuous growth of irrigated agricultural has resulted in decline of groundwater levels in many regions of Maryland and the Mid–Atlantic. The main objective of this study was to use crop water productivity as an index to evaluate different irrigation strategies including rainfed, groundwater, and recycled water use. The Soil and Water Assessment Tool (SWAT) was used to simulate the watershed hydrology and crop yield. It was used to estimate corn and soybean water productivity using different irrigation sources, including treated wastewater from adjacent wastewater treatment plants (WWTPs). The SWAT model was able to estimate crop water productivity at both subbasin and hydrologic response unit (HRU) levels. Results suggest that using treated wastewater as supplemental irrigation can provide opportunities for improving water productivity and save fresh groundwater sources. The total water productivity (irrigation and rainfall) values for corn and soybean were found to be 0.617 kg/m3 and 0.173 kg/m3, respectively, while the water productivity values for rainfall plus treated wastewater use were found to be 0.713 kg/m3 and 0.37 kg/m3 for corn and soybean, respectively. The outcomes of this study provide information regarding enhancing water management in similar physiographic regions, especially in areas where crop productivity is low due to limited freshwater availability.

Funder

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference50 articles.

1. NOAA National Centers for Environmental Information, State Climate Summaries, Maryland and District of Columbiahttps://statesummaries.ncics.org/chapter/md/

2. Aqueduct Water Stress Projections: Decadal Projections of Water Supply and Demand Using CMIP5 GCMs;Luck,2015

3. Modeling the Impacts of Climate Change on Crop Yield and Irrigation in the Monocacy River Watershed, USA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3