Streamflow Response to Climate and Land-Use Changes in a Tropical Island Basin

Author:

Cao Can123,Sun Rui14ORCID,Wu Zhixiang14ORCID,Chen Bangqian14ORCID,Yang Chuan14,Li Qian2,Fraedrich Klaus5

Affiliation:

1. Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

2. School of Geography and Planning, Ningxia University, Yinchuan 750021, China

3. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

4. Hainan Danzhou Tropical Agro-Ecosystem National Observation and Research Station, Danzhou 571737, China

5. Max Planck Institute for Meteorology, 20146 Hamburg, Germany

Abstract

The effects of climate change and of land use/cover change (LUCC) on streamflow as demonstrated by hydrological models are pressing issues on the frontiers of global environmental change research. The Nandu River Basin (NRB) as the largest of three river basins on the tropical Hainan Island, China, is subjected to an analysis of streamflow response to climate and to land-use change. It is based on the Soil and Water Assessment Tool (SWAT) coupled with climate change signals extracted from the global climate model data in the Coupled Model Intercomparison Project Phase 6 (CMIP6) and with land-use change scenarios modeled by Cellular Automata (CA)—Markov. The results are summarized as follows: (1) Climate change contributed more to streamflow change than land-use change in the NRB, with contributions of 97.57% and 2.43%, respectively. Precipitation and temperature were the most important climate variables, contributing 92.66% and 4.91% to streamflow change. (2) In the tropical island basin from 1990 to 2015, LUCC regulated the hydrological processes in the NRB and affected hydrological processes by increasing evapotranspiration and decreasing surface runoff and subsurface flow, which resulted in decreasing streamflow. (3) Under the climate change and land-use change scenarios of the near-term period (2021–2040), the annual streamflow decreased as during the reference period (1995–2014); particularly, it decreased most (−6.16%) on the SSP126 path. These results present a case study for understanding the hydrological cycle of tropical island basins and to provide a theoretical basis for water resources management and regional sustainable development of tropical islands.

Funder

Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences

High-level Talent Project of Hainan Basic and Applied Basic Research Program

Earmarked Fund for China Agriculture Research System

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3