Thin-Walled Commercially Pure Titanium Structures: Laser Powder Bed Fusion Process Parameter Optimization

Author:

Depboylu Fatma Nur1,Yasa Evren2,Poyraz Ozgur3,Korkusuz Feza4ORCID

Affiliation:

1. Department of Bioengineering, Institute of Science and Technology, Hacettepe University, Ankara 06800, Turkey

2. Department of Mechanical Engineering, Eskişehir Osmangazi University, Eskisehir 26480, Turkey

3. Department of Mechanical Engineering, Eskişehir Technical University, Eskişehir 26555, Turkey

4. Faculty of Medicine, Department of Sports Medicine, Hacettepe University, Ankara 06100, Turkey

Abstract

Laser powder bed fusion (L-PBF) process parameters can be changeable depending on the part geometry due to thermal conductivity differences. The number of studies on the process parameter development for commercial pure titanium (Cp-Ti) with the L-PBF process is also quite limited in the literature. The aim of this study is to present a comprehensive process development for the production of Cp-Ti bulk and thin structures with the L-PBF technology. In the first phase, the right process parameters, including scan speed, laser power, hatch distance, and layer thickness, were identified with prismatic specimens with thin walls so that the obtained parameters could be used for both bulky sections and thin features such as lattice structures. The process parameters were varied to change the volumetric energy density from 19 to 208 J/mm3 among 80 different parameter sets. Parameter sets having a Volumetric Energy Density (VED) value between 32 J/mm3 and 47 J/mm3 gave almost fully dense Cp-Ti parts while the laser power was set to 200–250 W and the scan speed was used as 1000–1400 mm/s. Finally, Vickers hardness and tensile tests were applied to highly dense Cp-Ti parts. This study involving investigating the effect of process parameters on a wide range demonstrated that L-PBF is a favorable manufacturing technology for Cp-Ti parts with almost full density and good mechanical properties as well as good dimensional accuracy even on thin geometries. Moreover, the results show that combining parameters into a single one, i.e., VED, is not a proper way to optimize the process parameters since increasing laser power or decreasing the scan speed may alter the results, although VED is increased in both manners.

Funder

Cooperation of The Scientific and Technological Research Council of Turkey

National Research Foundation (NRF) of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3