Residual Stress and Dimensional Deviation in a Commercially Pure Titanium Thin Bipolar Plate for a Fuel Cell Using Laser Power Bed Fusion

Author:

Lee Tack12,Auyeskhan Ulanbek34ORCID,Kim Nam-Hun3ORCID,Kim Dong-Hyun2

Affiliation:

1. Advanced Cutting Tool and Machining Center, Daegu Mechatronics & Materials Institute, Daegu 42715, Republic of Korea

2. 3D Printing Manufacturing Process Center, Korea Institute of Industrial Technology, Ulsan 44776, Republic of Korea

3. Department Mechanical and Aerospace Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

4. Department Intelligent Systems and Cybersecurity, Astana IT University, Astana 010000, Kazakhstan

Abstract

In this study, the feasibility of commercially pure (CP)-Ti bipolar plates for fuel cells were assessed by designing, manufacturing, and evaluating thin plates fabricated through the laser powder bed fusion (L-PBF) technique. The width, height, and thickness of thin CP-Ti plates were carefully considered in its design to ensure comprehensive evaluation. The maximum displacement was measured through blue light scanning in accordance with the building direction. The finite element model and experimental results showed that the building layer per volume has a linear relationship with the maximum displacement and maximum residual tensile stress along the building direction. Thin plates with a high aspect ratio (198 × 53 × 1.5 mm) had the lowest maximum displacement (0.205 mm) when building in the height direction and had a high correlation coefficient with the finite element model (0.936). Proper aspect ratio design and building strategy enable highly accurate manufacturing of CP-Ti thin plates for fuel cell systems.

Funder

Ministry of SMEs and Startups

MOTIE

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3