Metrological and Critical Characterization of the Intel D415 Stereo Depth Camera

Author:

Carfagni Monica,Furferi Rocco,Governi Lapo,Santarelli Chiara,Servi Michaela,Uccheddu Francesca,Volpe YaryORCID

Abstract

Low-cost RGB-D cameras are increasingly being used in several research fields, including human–machine interaction, safety, robotics, biomedical engineering and even reverse engineering applications. Among the plethora of commercial devices, the Intel RealSense cameras have proven to be among the most suitable devices, providing a good compromise between cost, ease of use, compactness and precision. Released on the market in January 2018, the new Intel model RealSense D415 has a wide acquisition range (i.e., ~160–10,000 mm) and a narrow field of view to capture objects in rapid motion. Given the unexplored potential of this new device, especially when used as a 3D scanner, the present work aims to characterize and to provide metrological considerations for the RealSense D415. In particular, tests are carried out to assess the device performance in the near range (i.e., 100–1000 mm). Characterization is performed by integrating the guidelines of the existing standard (i.e., the German VDI/VDE 2634 Part 2) with a number of literature-based strategies. Performance analysis is finally compared against the latest close-range sensors, thus providing a useful guidance for researchers and practitioners aiming to use RGB-D cameras in reverse engineering applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mitigating RGB-D camera errors for robust ultrasonic inspections using a force-torque sensor;Nondestructive Testing and Evaluation;2024-08-06

2. From CNNs to Transformers in Multimodal Human Action Recognition: A Survey;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-07-09

3. An Overview on Current Technologies for Assisted Living;2024 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv);2024-06-12

4. RISeg: Robot Interactive Object Segmentation via Body Frame-Invariant Features;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

5. Overview of modulation techniques for spatially structured-light 3D imaging;Optics & Laser Technology;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3