VID2META: Complementing Android Programming Screencasts with Code Elements and GUIs

Author:

Alahmadi Mohammad D.ORCID

Abstract

The complexity of software projects and the rapid technological evolution make it such that developers often need additional help and knowledge to tackle their daily tasks. For this purpose, they often refer to online resources, which are easy to access and contain a wealth of information in various formats. Programming screencasts hosted on platforms such as YouTube are one such online resource that has seen a growth in popularity and adoption over the past decade. These screencasts usually have some metadata such as a title, a short description, and a set of tags that should describe what the main concepts captured in the video are. Unfortunately, metadata are often generic and do not contain detailed information about the code showcased in the tutorial, such as the API calls or graphical user interface (GUI) elements employed, which could lead to developers missing useful tutorials. Having a quick overview of the main code elements and GUIs used in a video tutorial can be very helpful for developers looking for code examples involving specific API calls, or looking to design applications with a specific GUI in mind. The aim is to make this information easily available to developers, and propose VID2META, a technique that automatically extracts Java import statements, class names, method information, GUI elements, and GUI screens from videos and makes them available to developers as metadata. VID2META is currently designed to work with Android screencasts. It analyzes video frames using a combination of computer vision, deep learning, optical character recognition, and heuristic-based approaches to identify the needed information in a frame, extract it, and present it to the developer. VID2META has been evaluated in an empirical study on 70 Android programming videos collected from YouTube. The results revealed that VID2META can accurately detect and extract Java and GUI elements from Android programming videos with an average accuracy of 90%.

Funder

university of jeddah

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SCC-GPT: Source Code Classification Based on Generative Pre-Trained Transformers;Mathematics;2024-07-07

2. Optimizing OCR Performance for Programming Videos: The Role of Image Super-Resolution and Large Language Models;Mathematics;2024-03-30

3. Implementation of Self-Learning Topic for Developing Interactive Mobile Application in Flutter Programming Learning Assistance System;2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS);2024-01-28

4. Improving Code Extraction from Coding Screencasts Using a Code-Aware Encoder-Decoder Model;2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE);2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3