Abstract
In this paper, a new deterministic method is proposed. This method depends on presenting (suggesting) some modifications to existing parameters of some conjugate gradient methods. The parameters of our suggested method contain a mix of deterministic and stochastic parameters. The proposed method is added to a line search algorithm to make it a globally convergent method. The convergence analysis of the method is established. The gradient vector is estimated by a finite difference approximation approach, and a new step-size h of this approach is generated randomly. In addition, a set of stochastic parameter formulas is constructed from which some solutions are generated randomly for an unconstrained problem. This stochastic technique is hybridized with the new deterministic method to obtain a new hybrid algorithm that finds an approximate solution for the global minimization problem. The performance of the suggested hybrid algorithm is tested in two sets of benchmark optimization test problems containing convex and non-convex functions. Comprehensive comparisons versus four other hybrid algorithms are listed in this study. The performance profiles are utilized to evaluate and compare the performance of the five hybrid algorithms. The numerical results show that our proposed hybrid algorithm is promising and competitive for finding the global optimum point. The comparison results between the performance of our suggested hybrid algorithm and the other four hybrid algorithms indicate that the proposed algorithm is competitive with, and in all cases superior to, the four algorithms in terms of the efficiency, reliability, and effectiveness for finding the global minimizers of non-convex functions.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference72 articles.
1. Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing;Aarts,1989
2. International Series in Operations Research & Management Science;Hillier,2001
3. Simulated Annealing: Theory and Applications;Laarhoven,1987
4. Algorithm 851
5. A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献