Improved versions of crow search algorithm for solving global numerical optimization problems

Author:

Sheta Alaa,Braik Malik,Al-Hiary Heba,Mirjalili SeyedaliORCID

Abstract

AbstractOver recent decades, research in Artificial Intelligence (AI) has developed a broad range of approaches and methods that can be utilized or adapted to address complex optimization problems. As real-world problems get increasingly complicated, this requires an effective optimization method. Various meta-heuristic algorithms have been developed and applied in the optimization domain. This paper used and ameliorated a promising meta-heuristic approach named Crow Search Algorithm (CSA) to address numerical optimization problems. Although CSA can efficiently optimize many problems, it needs more searchability and early convergence. Its positioning updating process was improved by supporting two adaptive parameters: flight length (fl) and awareness probability (AP) to tackle these curbs. This is to manage the exploration and exploitation conducts of CSA in the search space. This process takes advantage of the randomization of crows in CSA and the adoption of well-known growth functions. These functions were recognized as exponential, power, and S-shaped functions to develop three different improved versions of CSA, referred to as Exponential CSA (ECSA), Power CSA (PCSA), and S-shaped CSA (SCSA). In each of these variants, two different functions were used to amend the values of fl and AP. A new dominant parameter was added to the positioning updating process of these algorithms to enhance exploration and exploitation behaviors further. The reliability of the proposed algorithms was evaluated on 67 benchmark functions, and their performance was quantified using relevant assessment criteria. The functionality of these algorithms was illustrated by tackling four engineering design problems. A comparative study was made to explore the efficacy of the proposed algorithms over the standard one and other methods. Overall results showed that ECSA, PCSA, and SCSA have convincing merits with superior performance compared to the others.

Funder

Óbuda University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3