A Hybrid Clustering Approach Based on Fuzzy Logic and Evolutionary Computation for Anomaly Detection

Author:

Akhmedova ShakhnazORCID,Stanovov VladimirORCID,Kamiya Yukihiro

Abstract

In this study, a new approach for novelty and anomaly detection, called HPFuzzNDA, is introduced. It is similar to the Possibilistic Fuzzy multi-class Novelty Detector (PFuzzND), which was originally developed for data streams. Both algorithms initially use a portion of labelled data from known classes to divide them into a given number of clusters, and then attempt to determine if the new instances, which may be unlabelled, belong to the known or novel classes or if they are anomalies, namely if they are extreme values that deviate from other observations, indicating noise or errors in measurement. However, for each class in HPFuzzNDA clusters are designed by using the new evolutionary algorithm NL-SHADE-RSP, the latter is a modification of the well-known L-SHADE approach. Additionally, the number of clusters for all classes is automatically adjusted in each step of HPFuzzNDA to improve its efficiency. The performance of the HPFuzzNDA approach was evaluated on a set of benchmark problems, specifically generated for novelty and anomaly detection. Experimental results demonstrated the workability and usefulness of the proposed approach as it was able to detect extensions of the known classes and to find new classes in addition to the anomalies. Moreover, numerical results showed that it outperformed PFuzzND. This was exhibited by the new mechanism proposed for cluster adjustments allowing HPFuzzNDA to achieve better classification accuracy in addition to better results in terms of macro F-score metric.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference86 articles.

1. A review on concept evolution technique on data stream;Gurjar;Proceedings of the 2015 International Conference on Pervasive Computing (ICPC),2015

2. A survey on concept drift adaptation

3. Novelty detection with application to data streams

4. Knowledge Discovery from Data Streams;Gama,2010

5. Possibilistic approach for novelty detection in data streams;Silva;Proceedings of the 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3