Abstract
The aim of this study was to investigate the influence of cryogrinding pretreatment on the recovery of essential oil, phenolics and pigments from myrtle leaves. The duration of cryogrinding (3, 6 and 9 min) in combination with the duration of hydrodistillation (30, 60 and 90 min) for the isolation of essential oils and the duration of hydroethanolic extraction (5, 10 and 15 min) for the isolation of phenols and pigments were studied as independent factors in a full factorial design. The major volatile components detected in myrtle leaf essential oil were myrtenyl acetate, 1,8-cineole, α-pinene and linalool. The most abundant phenols detected were myricetin derivatives (myricetin 3-O-galactoside and myricetin 3-O-rhamnoside), galloylquinic acid, myricetin and digalloylquinic acid, while the major pigments were chlorophyll b, pheophytin a and lutein. A 3 min cryogrinding pretreatment significantly increased the yield and concentrations of essential oil volatile compounds and reduced the distillation time to 30 min. A 9 min cryogrinding pretreatment and 15 min extraction resulted in at least 40% higher concentrations of phenolic compounds and pigments in the extracts when compared to the untreated control. According to the results obtained, cryogrinding can significantly increase the yield of myrtle EO and extracts and also modulate their composition.
Funder
Bioactive molecules of medical plants as natural antioxidants, microbicides and preservatives
Croatian Government and the European Union through the European Regional Development Fund—Operational Programme Competitiveness and Cohesion
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering