Life Cycle Energy Consumption and GHG Emissions of the Copper Production in China and the Influence of Main Factors on the above Performance

Author:

Liu Lingchen,Xiang DongORCID,Cao Huiju,Li Peng

Abstract

The copper demand and production in China are the largest in the world. In order to obtain the trends of the energy consumption and GHG emissions of copper production in China over a number of years, this paper uses a life cycle analysis method to calculate the above two indexes, in the years between 2004 and 2017. The life cycle energy consumption ranged between 101.78 and 31.72 GJ/t copper and the GHG emissions varied between 9.96 and 3.09 t CO2 eq/t copper due to the improvements in mining and smelting technologies. This study also analyses the influence of electricity sources, auxiliary materials consumption, and copper ore grade on the life cycle performance. Using wind or nuclear electricity instead of mixed electricity can reduce energy consumption by 63.67–76.27% or 64.23–76.94%, and GHG emissions by 64.42–77.84% or 65.08–78.63%, respectively. The GHG emissions and energy consumption of underground mining are approximately 2.97–7.03 times that of strip mining, while the influence of auxiliary materials on the above two indexes is less than 3.88%.

Funder

National Natural Science Foundation of China

Anhui Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3