Hydrogen Plasma for Low-Carbon Extractive Metallurgy: Oxides Reduction, Metals Refining, and Wastes Processing

Author:

Satritama B.ORCID,Cooper C.,Fellicia D.,Pownceby M. I.,Palanisamy S.,Ang A.,Mukhlis R. Z.,Pye J.,Rahbari A.,Brooks G. A.,Rhamdhani M. A.

Abstract

AbstractCarbon-rich sources, such as coal and carbon monoxide gas, have been extensively used in the metal industry as the reducing agent of metal oxides and as the energy source for metal production. Consequently, the extractive metal sector contributes to approximately 9.5% of global greenhouse gas emissions. Hydrogen gas offers a promising alternative to using carbon in metallurgical processes as an eco-friendly reductant and energy provider that produces water vapor as a by-product. However, molecular hydrogen has some barriers to implementation. These primarily concern the thermodynamics and kinetics of metal oxide reduction. To address these issues, researchers have explored the use of hydrogen plasma, which is generated by applying high energy to molecular hydrogen to produce atomic, ionic, and excited hydrogen species. Hydrogen plasma has thermodynamic and kinetic advantages over molecular hydrogen and carbon-based reductants since it exhibits a lower standard Gibbs free energy of reaction for H2O formation and a lower activation energy. Hydrogen plasma is also a versatile reductant as it is proven on a laboratory scale to produce metal in fewer steps, process a wide range of oxides feed and feed sizes, and be used to refine metals. There are, however, some limitations to using hydrogen plasma in extractive metallurgy. These include the cost of electricity, potential back reactions or reoxidation, and industrial scale-up challenges such as heat utilization or heat loss minimization. This study undertakes a comprehensive review of prior research on the use of hydrogen plasma for metal oxides reduction and reviewing state-of-the-art techniques for its use in extractive metallurgy applications. An overview of hydrogen plasma utilization for producing and refining several metals from primary or secondary feed materials, the many types of plasma reactors, and the commonly used parameters for each metal production process are also presented. Prospects and potential feasibility of the hydrogen plasma route are also discussed. Graphical Abstract

Funder

HILT CRC

Victorian Hydrogen Hub

Commonwealth Scientific and Industrial Research Organisation

Swinburne University of Technology

Publisher

Springer Science and Business Media LLC

Reference236 articles.

1. Wood Mackenzie (2023) Beyond electricity: is hydrogen the key to greener smelting and refining? https://www.woodmac.com/. Accessed 10 December 2023

2. United Nations (2015) Transforming our world: the 2030 agenda for sustainable development. https://sdgs.un.org/2030agenda. Accessed 21 February 2024

3. Giacomazzi E, Troiani G, Di Nardo A, Calchetti G, Cecere D, Messina G, Carpenella S (2023) Hydrogen combustion: features and barriers to its exploitation in the energy transition. Energies 16(20):7174

4. Hydrogen Insight (2023) World first as Norsk Hydro smelts aluminium using green hydrogen instead of fossil gas. https://www.hydrogeninsight.com/. Accessed 10 December 2023

5. Rio Tinto (2023) Rio Tinto and Sumitomo to build Gladstone hydrogen pilot plant to trial lower-carbon alumina refining. https://www.riotinto.com/. Accessed 10 December 2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3