Optimization of the ANNs Predictive Capability Using the Taguchi Approach: A Case Study

Author:

Manni Andrea,Saviano Giovanna,Bonelli Maria Grazia

Abstract

Artificial neural networks (ANNs) are a valid alternative predictive method to the traditional statistical techniques currently used in many research fields where a massive amount of data is challenging to manage. In environmental analysis, ANNs can analyze pollution sources in large areas, estimating difficult and expensive to detect contaminants from other easily measurable pollutants, especially for screening procedures. In this study, organic micropollutants have been predicted from heavy metals concentration using ANNs. Sampling was performed in an agricultural field where organic and inorganic contaminants concentrations are beyond the legal limits. A critical problem of a neural network design is to select its parametric topology, which can prejudice the reliability of the model. Therefore, it is very important to assess the performance of ANNs when applying different types of parameters of the net. In this work, based on Taguchi L12 orthogonal array, turning experiments were conducted to identify the best parametric set of an ANNs design, considering different combinations of sample number, scaling, training rate, activation functions, number of hidden layers, and epochs. The composite desirability value for the multi-response variables has been obtained through the desirability function analysis (DFA). The parameters’ optimum levels have been identified using this methodology.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference57 articles.

1. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences

2. A Review of Artificial Neural Networks: How Well Do They Perform in Forecasting Time Series?;Gomes-Ramos;Analìtika,2013

3. Neural Networks a Comprehensive Foundation;Haykin,1994

4. Neural Networks for Pattern Recognition;Bishop,1995

5. A logical calculus of the ideas immanent in nervous activity;Mc Culloch;Bull. Math. Biol.,1943

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3