Author:
Manni Andrea,Saviano Giovanna,Bonelli Maria Grazia
Abstract
Artificial neural networks (ANNs) are a valid alternative predictive method to the traditional statistical techniques currently used in many research fields where a massive amount of data is challenging to manage. In environmental analysis, ANNs can analyze pollution sources in large areas, estimating difficult and expensive to detect contaminants from other easily measurable pollutants, especially for screening procedures. In this study, organic micropollutants have been predicted from heavy metals concentration using ANNs. Sampling was performed in an agricultural field where organic and inorganic contaminants concentrations are beyond the legal limits. A critical problem of a neural network design is to select its parametric topology, which can prejudice the reliability of the model. Therefore, it is very important to assess the performance of ANNs when applying different types of parameters of the net. In this work, based on Taguchi L12 orthogonal array, turning experiments were conducted to identify the best parametric set of an ANNs design, considering different combinations of sample number, scaling, training rate, activation functions, number of hidden layers, and epochs. The composite desirability value for the multi-response variables has been obtained through the desirability function analysis (DFA). The parameters’ optimum levels have been identified using this methodology.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference57 articles.
1. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences
2. A Review of Artificial Neural Networks: How Well Do They Perform in Forecasting Time Series?;Gomes-Ramos;Analìtika,2013
3. Neural Networks a Comprehensive Foundation;Haykin,1994
4. Neural Networks for Pattern Recognition;Bishop,1995
5. A logical calculus of the ideas immanent in nervous activity;Mc Culloch;Bull. Math. Biol.,1943
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献