Feature Selection in a Credit Scoring Model

Author:

Laborda JuanORCID,Ryoo Seyong

Abstract

This paper proposes different classification algorithms—logistic regression, support vector machine, K-nearest neighbors, and random forest—in order to identify which candidates are likely to default for a credit scoring model. Three different feature selection methods are used in order to mitigate the overfitting in the curse of dimensionality of these classification algorithms: one filter method (Chi-squared test and correlation coefficients) and two wrapper methods (forward stepwise selection and backward stepwise selection). The performances of these three methods are discussed using two measures, the mean absolute error and the number of selected features. The methodology is applied for a valuable database of Taiwan. The results suggest that forward stepwise selection yields superior performance in each one of the classification algorithms used. The conclusions obtained are related to those in the literature, and their managerial implications are analyzed.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference68 articles.

1. Bank lending policy, credit scoring and value-at-risk

2. Financial Institutions Management: A Risk Management Approach;Saunders,2017

3. Building credit scoring models using genetic programming

4. Statistical Classification Methods in Consumer Credit Scoring: a Review

5. Introduction to Machine Learning;Alpaydin,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3