Flame Structure at Elevated Pressure Values and Reduced Reaction Mechanisms for the Combustion of CH4/H2 Mixtures

Author:

Gerasimov Ilya E.1ORCID,Bolshova Tatyana A.1ORCID,Osipova Ksenia N.12ORCID,Dmitriev Artëm M.12ORCID,Knyazkov Denis A.12ORCID,Shmakov Andrey G.12ORCID

Affiliation:

1. Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk 630090, Russia

2. Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia

Abstract

Understanding and controlling the combustion of clean and efficient fuel blends, like methane + hydrogen, is essential for optimizing energy production processes and minimizing environmental impacts. To extend the available experimental database on CH4 + H2 flame speciation, this paper reports novel measurement data on the chemical structure of laminar premixed burner-stabilized CH4/H2/O2/Ar flames. The experiments cover various equivalence ratios (φ = 0.8 and φ = 1.2), hydrogen content amounts in the CH4/H2 blend (XH2 = 25%, 50% and 75%), and different pressures (1, 3 and 5 atm). The flame-sampling molecular-beam mass spectrometry (MBMS) technique was used to detect reactants, major products, and several combustion intermediates, including major flame radicals. Starting with the detailed model AramcoMech 2.0, two reduced kinetic mechanisms with different levels of detail for the combustion of CH4/H2 blends are reported: RMech1 (30 species and 70 reactions) and RMech2 (21 species and 31 reactions). Validated against the literature data for laminar burning velocity and ignition delays, these mechanisms were demonstrated to reasonably predict the effect of pressure and hydrogen content in the mixture on the peak mole fractions of intermediates and adequately describe the new data for the structure of fuel-lean flames, which are relevant to gas turbine conditions.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3