A Comprehensive Review on the Prospects of Using Hydrogen–Methane Blends: Challenges and Opportunities

Author:

Makaryan Iren A.,Sedov Igor V.ORCID,Salgansky Eugene A.ORCID,Arutyunov Artem V.,Arutyunov Vladimir S.ORCID

Abstract

An analysis of the literature data indicates a wide front of research and development in the field of the use of methane–hydrogen mixtures as a promising environmentally friendly low-carbon fuel. The conclusion of most works shows that the use of methane–hydrogen mixtures in internal combustion engines improves their performance and emission characteristics. The most important aspect is the concentration of hydrogen in the fuel mixture, which affects the combustion process of the fuel and determines the optimal operating conditions of the engine. When using methane–hydrogen mixtures with low hydrogen content, the safety measures and risks are similar to those that exist when working with natural gas. Serious logistical problems are associated with the difficulties of using the existing gas distribution infrastructure for transporting methane–hydrogen mixtures. It is possible that, despite the need for huge investments, it will be necessary to create a new infrastructure for the production, storage and transportation of hydrogen and its mixtures with natural gas. Further research is needed on the compatibility of pipeline materials with hydrogen and methane–hydrogen mixtures, safety conditions for the operation of equipment operating with hydrogen or methane–hydrogen mixtures, as well as the economic and environmental feasibility of using these energy carriers.

Funder

Program of Fundamental Scientific Research of the State Academies of Sciences

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference114 articles.

1. Energy resources of the 21st century: problems and forecasts. Can renewable energy sources replace fossil fuels?

2. Energy penalty estimates for CO2 capture: Comparison between fuel types and capture-combustion modes

3. Recent Advances in CO2Capture and Utilization

4. Carbon Capture, Use and Storage. European Commission: A Legal Framework for the Safe Geological Storage of Carbon Dioxidehttps://ec.europa.eu/clima/eu-action/carbon-capture-use-and-storage_en

5. The Paris Agreementhttps://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3