Ultrasound-Assisted Anthocyanins Extraction from Pigmented Corn: Optimization Using Response Surface Methodology

Author:

Nurkhasanah Annisa1,Fardad Titouan2,Carrera Ceferino3ORCID,Setyaningsih Widiastuti1ORCID,Palma Miguel3ORCID

Affiliation:

1. Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Jalan Flora, Bulaksumur, Depok, Sleman, Yogyakarta 55281, Indonesia

2. Department of Physical Measurements, Institute of Technology of Lannion, CEDEX, 22302 Lannion, France

3. Department of Analytical Chemistry, Faculty of Sciences, Instituto de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Agrifood Campus of International Excellence (CeiA3), University of Cadiz, Puerto Real, 11510 Cadiz, Spain

Abstract

This study aimed to determine the optimal UAE conditions for extracting anthocyanins from pigmented corn using the Box–Behnken design (BBD). Six anthocyanins were identified in the samples and were used as response variables to evaluate the effects of the following working variables: extraction solvent pH (2–7), temperature (10–70 °C), solvent composition (0–50% methanol in water), and ultrasound power (20–80%). The extraction time (5–25 min) was evaluated for complete recovery. Response surface methodology suggested optimal conditions, specifically 36% methanol in water with pH 7 at 70 °C using 73% ultrasound power for 10 min. The method was validated with a high level of accuracy (>90% of recovery) and high precision (CV < 5% for both repeatability and intermediate precision). Finally, the proposed analytical extraction method was successfully applied to determine anthocyanins that covered a wide concentration range (36.47–551.92 mg kg−1) in several pigmented corn samples revealing potential varieties providing more health benefits.

Publisher

MDPI AG

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Structural Biology,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3