Modeling Grinding Processes—Mesh or Mesh-Free Methods, 2D or 3D Approach?

Author:

Sridhar PraveenORCID,Rodríguez Prieto Juan ManuelORCID,de Payrebrune Kristin M.ORCID

Abstract

The objectives of this study are mainly two: (1) to validate whether a single grain scratch process can be modeled in two dimensions under the assumption of plane strain, and (2) to select the best discretization approach to model a single grain scratch process. This paper first focuses on the simulation of the orthogonal cutting process (aluminum alloy A2024 T351) using two mesh-based discretization approaches, the pure Lagrangian method (LAG) and the arbitrary Lagrangian–Eulerian method (ALE), and two particle-based approaches, the particle finite element method (PFEM) and smooth particle hydrodynamics (SPH), for both positive and negative rake angles. Benchmarking of the orthogonal cutting models at a rake angle of γ=20∘ is performed with the results of the process forces (cutting and passive forces) of a turning experiment from the literature. It is shown that all models are able to predict the cutting forces, but not the passive force. The orthogonal cutting model is further extended to simulate the cutting mechanism with negative rake tool geometries typically found in grinding and single grit scratching processes. The effects of the negative rake angles on the discretization approaches are studied. The calculated process forces are also compared to the measurements of the single grit scratch process performed at our laboratory. The 2D orthogonal cutting models significantly overestimate the process forces. One of the reasons why the orthogonal 2D cutting model is inadequate is that it cannot describe the complex mechanisms of material removal such as rubbing, plowing, and cutting. To account for these phenomena in LAG, ALE, and SPH discretization approaches, a 3D scratch model is developed. When comparing the process forces of the 3D model with the experimental measurements, all three discretization approaches show good agreement. However, it can be seen that the ALE model most closely matches the process forces with the experimental results. Finally, the ALE 3D scratch model was subjected to sensitivity analysis by changing the cutting speed, the depth of cut and the tool geometry. The results clearly show that the ALE method not only predicts the process forces and form the trends observed in the scratching experiments, but also predicts the scratch topography satisfactorily. Hence, we conclude that a 3D model is necessary to describe a scratch process and that the ALE method is the best discretization method.

Funder

German Research Foundation

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3