Multiaxial Fatigue Life Assessment of Integral Concrete Bridge with a Real-Scale and Complicated Geometry Due to the Simultaneous Effects of Temperature Variations and Sea Waves Clash

Author:

Abdollahnia Hamid,Alizadeh Elizei Mohammad Hadi,Reza Kashyzadeh KazemORCID

Abstract

In the present study, the authors attempted to predict the fatigue lifetime of a real-scale integral concrete bridge with H-shaped steel piles resulting from working and environmental conditions. In this regard, various types of nonproportional variable amplitude loads were applied on the bridge, such as temperature variations and sea waves clash. To this end, CATIA software was used to model the real-scale bridge with its accessories, such as a concrete deck, concrete anchors (walls), I-shaped concrete beams (Ribs), and steel piles. Subsequently, stress analysis was performed to determine the critical area apt to fail. The results showed that steel piles are the most critical bridge components. As a result, in future analysis, the purpose will be to study this critical area, and the effect of relative humidity on the fatigue properties of concrete was ignored. Subsequently, the time history of stress tensor components in the critical area was obtained by performing transient dynamic analysis. Various well-known equivalent stress fatigue theories (von Mises, Findley, Dang Van, McDiarmid, Carpinteri–Spagnoli, Modified Findley, Modified McDiarmid, and Liu–Zenner) were utilized to calculate the equivalent stress caused by the simultaneous effect of temperature variations and sea waves clash. Eventually, the fatigue life of the structure was predicted by employing the rainflow counting algorithm and the Palmgren–Miner damage accumulation rule. The results indicated a reduction in the multiaxial fatigue life of the structure under the simultaneous effects of two phenomena, the daily temperature variations and the sea waves clash, of approximately 87% and 66%, respectively, compared with the fatigue life of the structure under either the effect of temperature changes or the effect of sea waves clash, separately. Therefore, it was necessary to consider all the cyclic loads in the structural design step to estimate the fatigue life of the structure. Moreover, the findings of this case study revealed that the lowest value of multiaxial fatigue lifetime is related to the application of the Liu-Zenner criterion. In other words, this criterion is more conservative than the other used criteria.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3