Experimental Study of Local Scour around Tripod Foundation in Combined Collinear Waves-Current Conditions

Author:

Hu Ruigeng,Wang Xiuhai,Liu Hongjun,Lu Yao

Abstract

A series of laboratory experiments were conducted in a wave-current flume to investigate the scour evolution and scour morphology around tripod in combined waves and current. The tripod model was made using the 3D printing technology, and it was installed in seabed with three installation angles α = 0°, 90°and 180° respectively. In the present study, the scour evolution and scour characteristic were first analyzed. Then, the equilibrium scour depth Seq was investigated. Furthermore, a parametric study was carried out to study the effects of Froude number Fr and Euler number Eu on equilibrium scour depth Seq respectively. Finally, the effects of tripod’s structural elements on Seq were discussed. The results indicate that the maximum scour hole appeared underneath the main column for installation angle α = 0°, 90° and 180°. The Seq for α = 90° was greater than the case of α = 0° and α = 180°, implying the tripod suffered from more severe scour for α = 90°. When KC was fixed, the dimensionless time scale T* for α = 90° was slightly larger than the case of α = 0° and α = 180° and the T* was linearly correlated with Ucw in the range of 0.347 < Ucw < 0.739. The higher Fr and Eu both resulted in the greater scour depth for tripod in combined waves and current. The logarithmic formula can depict the general trend of Seq and Fr (Eu) for tripod in combined waves and current.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3