Numerical Study of Local Scour around Tripod Foundation in Random Waves

Author:

Hu Ruigeng,Wang Xiuhai,Liu Hongjun,Chen Da

Abstract

In this study, the local scour around tripods in random waves is numerically investigated. The seabed-tripod-fluid numerical model with an RNG k−ε turbulence model is built and validated. Following that, the scour characteristics and flow velocity distribution are analyzed using the present numerical model. Finally, a revised stochastic model is proposed to predict the equilibrium scour depth, Seq, around tripods in random waves. The results indicate that the present seabed-tripod-fluid numerical model is capable of depicting the scour process and of capturing the flow field around tripods with high accuracy. Due to the blockage effects of the main column and structural elements, there is enhanced flow acceleration underneath the main column and the lower diagonal braces, which increases the turbulence intensity and seabed shear stress, causing more particles to be mobilized and transported, resulting in more severe scour at the site. The revised stochastic model shows the best agreement with the numerical and experimental results when n = 20, but more experimental data and numerical results are still needed to verify the adaptation of the revised stochastic model for larger Keulegan–Carpenter (KC) number conditions (KCrms,a > 4).

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3