Phytotoxicity in Seedlings of Rhizophora mangle (L.) Exposed to 2,4-Dichlorophenoxyacetic Acid under Experimental Conditions

Author:

Chan-Keb Carlos A.ORCID,Agraz-Hernández Claudia M.ORCID,Pérez-Balan Román A.,Gutiérrez-Alcántara Eduardo J.,Muñiz-Salazar Raquel,Reyes-Castellano Jordán E.,Osti-Sáenz Juan

Abstract

Mangroves are considered one of the most productive ecosystems worldwide, providing multiple environmental goods and services; however, in recent years, there have been modifications and deterioration in the structure and function of these ecosystems, caused by various natural events and anthropic activities, such as the construction of roads, wastewater discharge, unsustainable livestock, and agricultural practices, as well as the impact of chemicals, such as heavy metals, oil spills, and the use of herbicides. In this research, phytotoxic effects on seedlings of Rhizophora mangle were evaluated at an exposure of five dilutions w/v (5%, 10%, 25%, 50%, and 100%) of the commercial presentation of 2,4-dichlorophenoxyacetic acid (2,4-D). Propagules grown in a greenhouse under local tidal regimes were used, so the growth of stem diameter, height, biomass production in root, leaves, and stems, as well as the concentration of chlorophyll a of the exposed seedlings were measured. The comparison of these parameters in seedlings with only seawater presented significant differences (p ≤ 0.05) and inhibitory effects on growth (diameter), the stem concentration of chlorophyll a, and the production of biomass of leaves, stems, and roots. The inhibitory effect of exposure to 2,4-D on chlorophyll production and root biomass is highlighted, with an average decrease of 45% relative to the control. The sensitivity of the Rhizophora mangle seedlings to the applied concentrations of herbicide evidence the inhibitory effects on the morphological variables of biomass production and chlorophyll a production in mangrove leaves.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3