Estimating Stand and Fire-Related Surface and Canopy Fuel Variables in Pine Stands Using Low-Density Airborne and Single-Scan Terrestrial Laser Scanning Data

Author:

Alonso-Rego Cecilia,Arellano-Pérez StéfanoORCID,Guerra-Hernández Juan,Molina-Valero Juan Alberto,Martínez-Calvo AdelaORCID,Pérez-Cruzado CésarORCID,Castedo-Dorado FernandoORCID,González-Ferreiro EduardoORCID,Álvarez-González Juan GabrielORCID,Ruiz-González Ana Daría

Abstract

In this study, we used data from a thinning trial conducted on 34 different sites and 102 sample plots established in pure and even-aged Pinus radiata and Pinus pinaster stands, to test the potential use of low-density airborne laser scanning (ALS) metrics and terrestrial laser scanning (TLS) metrics to provide accurate estimates of variables related to surface and canopy fires. An exhaustive field inventory was carried out in each plot to estimate the main stand variables and the main variables related to fire hazard: surface fuel loads by layers, fuel strata gap, surface fuel height, stand mean height, canopy base height, canopy fuel load and canopy bulk density. In addition, the point clouds from low-density ALS and single-scan TLS of each sample plot were used to calculate metrics related to the vertical and horizontal distribution of forest fuels. The comparative performance of the following three non-parametric machine learning techniques used to estimate the main stand- and fire-related variables from those metrics was evaluated: (i) multivariate adaptive regression splines (MARS), (ii) support vector machine (SVM), and (iii) random forest (RF). The selection of the best modeling approach was based on a comparison of the root mean square error (RMSE), obtained by optimizing the parameters of each technique and performing cross-validation. Overall, the best results were obtained with the MARS techniques for data from both sensors. The TLS data provided the best results for variables associated with the internal characteristics of canopy structure and understory fuel but were less reliable for estimating variables associated with the upper canopy, due to occlusion by mid-canopy foliage. The combination of ALS and TLS metrics improved the accuracy of estimates for all variables analyzed, except the height and the biomass of the understory shrubs. The variability demonstrated by the combined use of both types of metrics ranged from 43.11% for the biomass of duff litter layers to 94.25% for dominant height. The results suggest that the combination of machine learning techniques and metrics derived from low-density ALS data, drawn from a single-scan TLS or a combination of both metrics, may represent a promising alternative to traditional field inventories for obtaining valuable information about surface and canopy fuel variables at large scales.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference105 articles.

1. BEHAVE: Fire Behavior Prediction and Fuel Modeling System: BURN Subsystem, Part 1;Andrews,1986

2. FARSITE: Fire Area Simulator-Model Development and Evaluation;Finney,1998

3. Potential of Sentinel-2A Data to Model Surface and Canopy Fuel Characteristics in Relation to Crown Fire Hazard

4. Improved estimates of forest vegetation structure and biomass with a LiDAR-optimized sampling design

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3