Potential of Sentinel-2A Data to Model Surface and Canopy Fuel Characteristics in Relation to Crown Fire Hazard

Author:

Arellano-Pérez Stéfano,Castedo-Dorado Fernando,López-Sánchez Carlos,González-Ferreiro EduardoORCID,Yang Zhiqiang,Díaz-Varela Ramón,Álvarez-González Juan,Vega José,Ruiz-González Ana

Abstract

Background: Crown fires are often intense and fast spreading and hence can have serious impacts on soil, vegetation, and wildlife habitats. Fire managers try to prevent the initiation and spread of crown fires in forested landscapes through fuel management. The minimum fuel conditions necessary to initiate and propagate crown fires are known to be strongly influenced by four stand structural variables: surface fuel load (SFL), fuel strata gap (FSG), canopy base height (CBH), and canopy bulk density (CBD). However, there is often a lack of quantitative data about these variables, especially at the landscape scale. Methods: In this study, data from 123 sample plots established in pure, even-aged, Pinus radiata and Pinus pinaster stands in northwest Spain were analyzed. In each plot, an intensive field inventory was used to characterize surface and canopy fuels load and structure, and to estimate SFL, FSG, CBH, and CBD. Equations relating these variables to Sentinel-2A (S-2A) bands and vegetation indices were obtained using two non-parametric techniques: Random Forest (RF) and Multivariate Adaptive Regression Splines (MARS). Results: According to the goodness-of-fit statistics, RF models provided the most accurate estimates, explaining more than 12%, 37%, 47%, and 31% of the observed variability in SFL, FSG, CBH, and CBD, respectively. To evaluate the performance of the four equations considered, the observed and estimated values of the four fuel variables were used separately to predict the potential type of wildfire (surface fire, passive crown fire, or active crown fire) for each plot, considering three different burning conditions (low, moderate, and extreme). The results of the confusion matrix indicated that 79.8% of the surface fires and 93.1% of the active crown fires were correctly classified; meanwhile, the highest rate of misclassification was observed for passive crown fire, with 75.6% of the samples correctly classified. Conclusions: The results highlight that the combination of medium resolution imagery and machine learning techniques may add valuable information about surface and canopy fuel variables at large scales, whereby crown fire potential and the potential type of wildfire can be classified.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3