Cloud–Snow Confusion with MODIS Snow Products in Boreal Forest Regions

Author:

Wang Xiaoyan,Han Chao,Ouyang Zhiqi,Chen SiyongORCID,Guo Hui,Wang Jian,Hao XiaohuaORCID

Abstract

Reliable cloud masks in Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover products have a high potential to improve the retrieval of snow properties. However, cloud–snow confusion is a popular problem in MODIS snow cover products, especially in boreal forest areas. A large amount of forest snow is misclassified as clouds because of the low normalized difference snow index (NDSI), and excessive cloud masks limit the application of snow products. In addition, ice clouds are easily misclassified as snow due to their similar spectral characteristics, which leads to snow commission errors. In this paper, we quantitatively evaluated the cloud–snow confusion in Northeast China and found that snow-covered forests and transition zones from snow-covered to snow-free areas are prone to being misclassified as clouds, while clouds are less likely to be misclassified as snow. A temporal-sequence cloud–snow-distinguishing algorithm based on the high-frequency observation characteristics of the Himawarri-8 geostationary meteorological satellite is proposed. In the temporal-sequence images acquired from that satellite, the NDSI variance in cloud pixels should be greater than that of snow because clouds vary over time, while snow is relatively stable. In the MODIS snow cover products, the cloud pixels with NDSI variance lower than a threshold are identified as cloud-free areas and attributed their raw NDSI value, while the snow pixels with NDSI variance greater than the threshold are marked as clouds. We applied this method to MOD10A1 C6 in Northeast China. The results showed that the excessive cloud masks were greatly eliminated, and the new cloud mask was in good agreement with the real cloud distribution. At the same time, some possible ice clouds which had been misclassified as snow for their spectral characteristics similar to those of snow were identified correctly.

Funder

The National Natural Science Foundation of China:

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3