Effect of Cloud Mask on the Consistency of Snow Cover Products from MODIS and VIIRS

Author:

Liu Anwei,Che TaoORCID,Huang XiaodongORCID,Dai Liyun,Wang Jing,Deng Jie

Abstract

Snow cover has significant impacts on the global water cycle, ecosystem, and climate change. At present, satellite remote sensing is regarded as the most efficient approach to detect long-term and multiscale observations of snow cover extent. The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor onboard Joint Polar Satellite System (JPSS) satellites will replace the Moderate-Resolution Imaging Spectroradiometer (MODIS) to prolong data recording in the future. Therefore, it is a fundamental task to analyze and evaluate the consistency of the snow cover products retrieved from these two sensors. In this study, we performed comparisons and a consistency evaluation between the MODIS and VIIRS snow cover products in three major snow distribution regions in China: Northeast China (NE), Northwest China (NW) and the Qinghai–Tibet Plateau (QT). The results demonstrated that (1) the normalized difference snow index (NDSI)-derived snow cover products showed suitable consistency between VIIRS and MODIS under clear sky conditions, with a mean difference value of less than 5%; (2) the VIIRS snow cover product presented much more snow and fewer clouds than that of MODIS in the snow season due to the differences in cloud-masking algorithms; (3) cloud mask strongly affects the potential of snow cover observation, and presents seasonal pattern in the test regions; and (4) VIIRS is able to distinguish clouds from snow with greater accuracy. The comparisons indicated that the greater the difference in cloud cover, the poorer the agreement in snow cover. This evaluation implies that perfecting the cloud-masking algorithm of VIIRS to update the MODIS would be the best solution to achieve better consistency for long-term and high-quality snow cover products.

Funder

National Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research Program

Natural Science Foundation of Gansu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference73 articles.

1. IPCC (2019). IPCC Special Report on the Ocean and Cryosphere in a Changing Climate: Summary for Policymakers, IPCC.

2. Snow–atmosphere coupling in the Northern Hemisphere;Henderson;Nat. Clim. Chang.,2018

3. Eurasian snow cover and seasonal forecast of Indian summer monsoon rainfall;Kumar;Hydrol. Sci. J.,1988

4. Observed Impact of Snow Cover on the Heat Balance and the Rise of Continental Spring Temperatures;Groisman;Science,1994

5. The Effect of Snow Cover on the Climate;Cohen;J. Clim.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3