Microtopographic Controls on Erosion and Deposition of a Rilled Hillslope in Eastern Tennessee, USA

Author:

Li YingkuiORCID,Lu Xiaoyu,Washington-Allen Robert A.ORCID,Li Yanan

Abstract

Topography plays an important role in shaping the patterns of sediment erosion and deposition of different landscapes. Studies have investigated the role of topography at basin scales, whereas little work has been conducted on hillslopes, partially due to the lack of high-resolution topographic data. We monitored detailed topographic changes of a rilled hillslope in the southeastern United States using terrestrial laser scanning and investigated the influences of various microtopographic factors on erosion and deposition. The results suggest that the contributing area is the most important factor for both rill erosion and deposition. Rills with large contributing areas tend to have high erosion and deposition. Slope is positively related to erosion but negatively related to deposition. Roughness, on the other hand, is positively related to deposition but negatively related to erosion. Higher erosion and lower deposition likely occur on north-facing aspects, possibly because of higher soil moisture resulting from less received solar insolation. Similarly, soil moisture is likely higher in areas with higher terrain wetness index values, leading to higher erosion. This work provides important insight into the sediment dynamic and its microtopographic controls on hillslopes.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference68 articles.

1. Incorporating variable source area hydrology into a curve-number-based watershed model

2. Predicting Rainfall Erosion Losses-A Guide to Conservation Planning;Wischmeier,1978

3. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE);Renard,1997

4. A Process-Based Soil Erosion Model for USDA-Water Erosion Prediction Project Technology

5. Slope Length Effects on Soil Loss for Steep Slopes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3