Electrochemical Properties of Laser-Printed Multilayer Anodes for Lithium-Ion Batteries

Author:

Rist Ulrich1,Falkowski Viktoria1ORCID,Pfleging Wilhelm1ORCID

Affiliation:

1. Institute for Applied Materials-Applied Materials Physics (IAM-AWP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Abstract

New electrode architectures promise huge potential for improving batteries’ electrochemical properties, such as power density, energy density, and lifetime. In this work, the use of laser-induced forward transfer (LIFT) was employed and evaluated as a tool for the development of advanced electrode architectures. For this purpose, it was first confirmed that the printing process has no effect on the transferred battery material by comparing the electrochemical performance of the printed anodes with state-of-the-art coated ones. For this, polyvinylidene fluoride (PVDF) was used as a binder and n-methyl-2-pyrrolidone (NMP) as a solvent, which is reported to be printable. Subsequently, multilayer electrodes with flake-like and spherical graphite particles were printed to test if a combination of their electrochemical related properties can be realized with measured specific capacities ranging from 321 mAh·g−1 to 351 mAh·g−1. Further, a multilayer anode design with a silicon-rich intermediate layer was printed and electrochemically characterized. The initial specific capacity was found to be 745 mAh·g−1. The presented results show that the LIFT technology offers the possibility to generate alternative electrode designs, promoting research in the optimization of 3D battery systems.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3