Bio-Template Synthesis of V2O3@Carbonized Dictyophora Composites for Advanced Aqueous Zinc-Ion Batteries

Author:

Zhou Wei123ORCID,Zeng Guilin1,Jin Haotian2,Jiang Shaohua2ORCID,Huang Minjie1,Zhang Chunmei4ORCID,Chen Han3

Affiliation:

1. College of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou 412007, China

2. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China

3. Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, China

4. Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China

Abstract

In terms of new-generation energy-storing devices, aqueous zinc-ion batteries (AZIBs) are becoming the prime candidates because of their inexpensive nature, inherent safety, environmental benignity and abundant resources. Nevertheless, due to a restrained selection of cathodes, AZIBs often perform unsatisfactorily under long-life cycling and high-rate conditions. Consequently, we propose a facile evaporation-induced self-assembly technique for preparing V2O3@carbonized dictyophora (V2O3@CD) composites, utilizing economical and easily available biomass dictyophora as carbon sources and NH4VO3 as metal sources. When assembled in AZIBs, the V2O3@CD exhibits a high initial discharge capacity of 281.9 mAh g−1 at 50 mA g−1. The discharge capacity is still up to 151.9 mAh g−1 after 1000 cycles at 1 A g−1, showing excellent long-cycle durability. The extraordinary high electrochemical effectiveness of V2O3@CD could be mainly attributed to the formation of porous carbonized dictyophora frame. The formed porous carbon skeleton can ensure efficient electron transport and prevent V2O3 from losing electrical contact due to volume changes caused by Zn2+ intercalation/deintercalation. The strategy of metal-oxide-filled carbonized biomass material may provide insights into developing high-performance AZIBs and other potential energy storage devices, with a wide application range.

Funder

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3