Spectral Behavior of a Conjugated Polymer MDMO-PPV Doped with ZnO Nanoparticles: Thin Films

Author:

Abdelaziz Boutheina Ben1ORCID,Mustapha Nazir2,Bedja Idriss M.3,Aldaghri Osamah2ORCID,Idriss Hajo2,Ibrahem Moez2,Ibnaouf Khalid H.2ORCID

Affiliation:

1. Advanced Materials and Quantum Phenomena Laboratory, Physics Department, Faculty of Sciences of Tunis, Tunis El-Manar University, 2092 University Campus, Tunis 1006, Tunisia

2. Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia

3. Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia

Abstract

The purpose of the presented study is to examine the impact of zinc oxide nanoparticles (ZnO NPs) on the spectrum features of poly [2-methoxy-5-(3′,7′-dimethyloctyloxy)-1, 4-phenylenevinylene] (MDMO-PPV). The characteristics of the MDMO-PPV and doped ZnO NPS samples were assessed using several techniques. A set of solutions of MDMO-PPV in toluene that were doped with different ratio percentages of ZnO NPs was prepared to obtain thin films. Pristine and composite solutions were spin-coated on glass substrates. It was observed that MDMO-PPV had two distinct absorbance bands at 310 and 500 nm in its absorption spectrum. The UV-Vis spectrum was dramatically changed when 5% of ZnO NPs were added. The result showed a significant reduction in absorption of the band 500 nm, while 310 nm absorption increased rapidly and became more pronounced. Upon adding (10%) ZnONPs to the sample, no noticeable change was observed in the 500 nm band. However, the 310 nm band shifted towards the blue region. There is a dominant peak in the PL spectrum of MDMO-PPV in its pristine form around 575 nm and a smaller hump around 600 nm of the spectrum. The spectral profile at 600 nm and the intensity of both bands are improved by raising the ZnO NP concentration. These bands feature two vibronic transitions identified as (0-0) and (0-1). When the dopant concentration increased to the maximum dopant percentage (10%), the energy band gap values increased by 0.21 eV compared to the pristine MDMO-PPV. In addition, the refractive index (n) decreased to its lowest value of 2.30 with the presence of concentrations of ZnO NPs.

Funder

Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3