Wavelength Calibration for the LIBS Spectra of the Zhurong Mars Rover

Author:

Zhang Yizhong12,Ren Xin12ORCID,Chen Zhaopeng12ORCID,Chen Wangli1,Zhang Zhenqiang3,Liu Xiangfeng3ORCID,Xu Weiming3,Liu Jianjun12,Li Chunlai12ORCID

Affiliation:

1. Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

2. School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

Abstract

China’s first Mars rover, Zhurong, landed on the southern region of Utopia Planitia, Mars, on 14 May 2021 (UTC). Zhurong is equipped with the Mars Surface Composition Detection Package (MarSCoDe), which analyzes the Martian surface’s material composition. Composed of laser-induced breakdown spectroscopy (LIBS), short-wave infrared spectroscopy (SWIR), and a microimaging camera, MarsCoDe can work at a distance of 1.6–7 m to analyze element abundance and the mineralogy of targets on the Martian surface. Analysis shows that the wavelengths of MarSCoDe onboard LIBS spectra acquired within the same probe period will have different degrees of drift, leading to deviation in qualitative and quantitative elemental analysis. This paper finds that the spectrum drift follows a quadratic function relationship with the CCD temperature of the MarSCoDe spectrometer, based on which a wavelength calibration method is established. According to the function, the drift of a certain channel is calculated by the corresponding CCD temperature, and then the wavelength of the spectrum is calibrated by the drift. The accuracy of this calibration method for the position of peak wavelength in the LIBS spectrum can reach about 1/5 of the apparatus spectral width, and the cross-validation analysis using a norite standard sample shows that it is comparable to the wavelength calibration accuracy of the ChemCam onboard data product.

Funder

Key Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3