Alkali Trace Elements Observed by MarSCoDe LIBS at Zhurong Landing Site on Mars: Quantitative Analysis and Its Geological Implications

Author:

Luo Yuxuan12ORCID,Liu Jianjun12ORCID,Chen Zhaopeng12ORCID,Zhang Yizhong12ORCID,Wang Xing12ORCID,Ren Xin12ORCID,Liu Xiangfeng3,Zhang Zhenqiang3,Xu Weiming3,Shu Rong3

Affiliation:

1. Key Laboratory of Lunar and Deep Space Exploration National Astronomical Observatories Chinese Academy of Sciences (CAS) Beijing China

2. School of Astronomy and Space Science University of Chinese Academy of Sciences (UCAS) Beijing China

3. Key Laboratory of Space Active Opto‐electronics Technology Shanghai Institute of Technical Physics Chinese Academy of Sciences (CAS) Shanghai China

Abstract

AbstractMars Surface Composition Detector (MarSCoDe) is one of the important payloads carried by the Zhurong rover, China's first Mars exploration mission Tianwen‐1. The laser‐induced breakdown spectroscopy (LIBS) instrument of MarSCoDe is mainly used to detect major and trace elements on the surface of Mars. The quantitative analysis of alkali trace elements, namely lithium (Li), strontium (Sr), and rubidium (Rb), holds significance in unraveling the geological evolution of the Zhurong landing site. This study focuses on establishing univariate calibration models using MarSCoDe LIBS spectra from 84 samples tested in the ground laboratory. The accuracy of these models, within a few parts per million (ppm), was subsequently validated through the analysis of 12 onboard MarSCoDe Calibration Targets (MCCTs). With these models, Li, Sr, and Rb concentrations in the surface targets during the initial 300 sols (Martian days) traverse were determined. These concentrations ranged from 6 to 18, 106–628, and 22–87 ppm, respectively. Our results suggest that Li, Sr, and Rb are mainly related to the igneous rock components in the rocks and soils at the Zhurong landing site. The major secondary minerals in MarSCoDe scientific targets are likely small amounts of sulfates, which appear to have formed from the acidic weathering of recent surface brine. Clay minerals are likely either absent or very sparse in the scientific targets. The surface igneous materials at the landing site likely have originated from the most recent lava flow during the Amazonian epoch.

Funder

National Key Research and Development Program of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3