Exploring the Potentialities of Deep Reinforcement Learning for Incentive-Based Demand Response in a Cluster of Small Commercial Buildings

Author:

Deltetto Davide,Coraci Davide,Pinto Giuseppe,Piscitelli Marco SavinoORCID,Capozzoli AlfonsoORCID

Abstract

Demand Response (DR) programs represent an effective way to optimally manage building energy demand while increasing Renewable Energy Sources (RES) integration and grid reliability, helping the decarbonization of the electricity sector. To fully exploit such opportunities, buildings are required to become sources of energy flexibility, adapting their energy demand to meet specific grid requirements. However, in most cases, the energy flexibility of a single building is typically too small to be exploited in the flexibility market, highlighting the necessity to perform analysis at a multiple-building scale. This study explores the economic benefits associated with the implementation of a Reinforcement Learning (RL) control strategy for the participation in an incentive-based demand response program of a cluster of commercial buildings. To this purpose, optimized Rule-Based Control (RBC) strategies are compared with a RL controller. Moreover, a hybrid control strategy exploiting both RBC and RL is proposed. Results show that the RL algorithm outperforms the RBC in reducing the total energy cost, but it is less effective in fulfilling DR requirements. The hybrid controller achieves a reduction in energy consumption and energy costs by respectively 7% and 4% compared to a manually optimized RBC, while fulfilling DR constraints during incentive-based events.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3