Towards Circumpolar Mapping of Arctic Settlements and Infrastructure Based on Sentinel-1 and Sentinel-2

Author:

Bartsch AnnettORCID,Pointner GeorgORCID,Ingeman-Nielsen ThomasORCID,Lu WenjunORCID

Abstract

Infrastructure expands rapidly in the Arctic due to industrial development. At the same time, climate change impacts are pronounced in the Arctic. Ground temperatures are, for example, increasing as well as coastal erosion. A consistent account of the current human footprint is needed in order to evaluate the impact on the environments as well as risk for infrastructure. Identification of roads and settlements with satellite data is challenging due to the size of single features and low density of clusters. Spatial resolution and spectral characteristics of satellite data are the main issues regarding their separation. The Copernicus Sentinel-1 and -2 missions recently provided good spatial coverage and at the same time comparably high pixel spacing starting with 10 m for modes available across the entire Arctic. The purpose of this study was to assess the capabilities of both, Sentinel-1 C-band Synthetic Aperture Radar (SAR) and the Sentinel-2 multispectral information for Arctic focused mapping. Settings differ across the Arctic (historic settlements versus industrial, locations on bedrock versus tundra landscapes) and reference data are scarce and inconsistent. The type of features and data scarcity demand specific classification approaches. The machine learning approaches Gradient Boosting Machines (GBM) and deep learning (DL)-based semantic segmentation have been tested. Records for the Alaskan North Slope, Western Greenland, and Svalbard in addition to high-resolution satellite data have been used for validation and calibration. Deep learning is superior to GBM with respect to users accuracy. GBM therefore requires comprehensive postprocessing. SAR provides added value in case of GBM. VV is of benefit for road identification and HH for detection of buildings. Unfortunately, the Sentinel-1 acquisition strategy is varying across the Arctic. The majority is covered in VV+VH only. DL is of benefit for road and building detection but misses large proportions of other human-impacted areas, such as gravel pads which are typical for gas and oil fields. A combination of results from both GBM (Sentinel-1 and -2 combined) and DL (Sentinel-2; Sentinel-1 optional) is therefore suggested for circumpolar mapping.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3