First Measurement of Soil Freeze/Thaw Cycles in the Tibetan Plateau Using CYGNSS GNSS-R Data

Author:

Wu XueruiORCID,Dong ZhounanORCID,Jin ShuanggenORCID,He Yang,Song Yezhi,Ma Wenxiao,Yang LeiORCID

Abstract

The process of soil freezing and thawing refers to the alternating phase change of liquid water and solid water in the soil, accompanied by a large amount of latent heat exchange. It plays a vital role in the land water process and is an important indicator of climate change. The Tibetan Plateau in China is known as the “roof of the world”, and it is one of the most prominent physical characteristics is the freezing and thawing process of the soil. For the first time, this paper utilizes the spaceborne GNSS-R mission, i.e., CYGNSS (Cyclone Global Navigation Satellite System), to study the feasibility of monitoring the soil freeze-thaw (FT) cycles on the Tibetan Plateau. In the theoretical analysis part, model simulations show that there are abrupt changes in soil permittivities and surface reflectivities as the soil FT occurs. The CYGNSS reflectivities from January 2018 to January 2020 are compared with the SMAP FT state. The relationship between CYGNSS reflectivity and SMAP soil moisture within this time series is analyzed and compared. The results show that the effect of soil moisture on reflectivity is very small and can be ignored. The periodic oscillation change of CYGNSS reflectivity is almost the same as the changes in SMAP FT data. Freeze-thaw conversion is the main factor affecting CYGNSS reflectivity. The periodical change of CYGNSS reflectivity in the 2 years indicates that it is mainly caused by soil FT cycles. It is feasible to use CYGNSS to monitor the soil FT cycles in the Tibetan Plateau. This research expands the current application field of CYGNSS and opens a new chapter in the study of cryosphere using spaceborne GNSS-R with high spatial-temporal resolution.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3