Reviewing Space-Borne GNSS-Reflectometry for Detecting Freeze/Thaw Conditions of Near-Surface Soils

Author:

Liang Haishan12,Wu Xuerui3ORCID

Affiliation:

1. School of Resources, Environment and Architectural Engineering, Chifeng University, Chifeng 024000, China

2. Key Laboratory of Land Space Planning and Disaster Risk Prevention and Control in Chifeng City, Chifeng 024000, China

3. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China

Abstract

GNSS-Reflectometry, a technique that harnesses the power of microwave remote sensing, is poised to revolutionize our ability to detect and monitor near-surface soil freeze/thaw processes. This technique’s theoretical underpinnings are deeply rooted in the comprehensive explanation of the Zhang–Zhao dielectric constant model, which provides crucial insights into the behavior of frozen and thawed soils. The model elucidates how the dielectric properties of soil change as it transitions between frozen and thawed states, offering a scientific basis for understanding reflectivity variations. Furthermore, the theoretical framework includes a set of formulas that are instrumental in calculating reflectivity at Lower Right (LR) polarization and in deriving Dual-Polarization Differential Observables (DDMs). These calculations are pivotal for interpreting the signals captured by GNSS-R sensors, allowing for the detection of subtle changes in the soil’s surface conditions. The evolution of GNSS-R as a tool for detecting freeze/thaw phenomena has been substantiated through qualitative analyses involving multiple satellite missions, such as SMAP-R, TDS-1, and CYGNSS. These analyses have provided empirical evidence of the technique’s effectiveness, illustrating its capacity to capture the dynamics of soil freezing and thawing processes. In addition to these qualitative assessments, the application of a discriminant retrieval algorithm using data from CYGNSS and F3E GNOS-R has further solidified the technique’s potential. This algorithm contributes to refining the accuracy of freeze/thaw detection by distinguishing between frozen and thawed soil states with greater precision. The deployment of space-borne GNSS-R for monitoring near-surface freeze/thaw cycles has yielded commendable results, exhibiting robust consistency and delivering relatively precise retrieval outcomes. These achievements stand as testaments to the technique’s viability and its growing significance in the field of remote sensing. However, it is imperative to recognize and actively address certain limitations that have been highlighted in this review. These limitations serve as critical focal points for future research endeavors, directing the efforts toward enhancing the technique’s overall performance and applicability. Addressing these challenges will be essential for leveraging the full potential of GNSS-R to advance our understanding and management of near-surface soil freeze/thaw processes.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3