Abstract
Integrated-path differential absorption (IPDA) LiDAR is a promising means of measuring the global distributions of the column weighted xCO2 (dry-air mixing ratio of CO2) with adequate accuracy and precision. Most IPDA LiDARs are incapable of discerning the vertical information of CO2 diffusion, which is of great significance for studies on the carbon cycle and climate change. Hence, we developed an inversion method using the constrained linear least-squares technique for a pulsed direct-detection multi-wavelength IPDA LiDAR to obtain sliced xCO2. In the proposed inversion method, the atmosphere is sliced into three different layers, and the xCO2 of those layers is then retrieved using the constrained linear least-squares technique. Assuming complete knowledge of the water vapor content, the accuracy of the retrieved sliced xCO2 could be as high as 99.85% when the signal-to-noise ratio of central wavelength retrievals is higher than 25 (with a log scale). Further experiments demonstrated that different carbon characteristics can be identified by the sign of the carbon gradient of the retrieved xCO2 between the ABL (atmospheric boundary layer) and FT (free troposphere). These results highlight the potential applications of multiple wavelength IPDA LiDAR.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献