The Correlation between Vehicle Vertical Dynamics and Deep Learning-Based Visual Target State Estimation: A Sensitivity Study

Author:

Weber YannikORCID,Kanarachos StratisORCID

Abstract

Automated vehicles will provide greater transport convenience and interconnectivity, increase mobility options to young and elderly people, and reduce traffic congestion and emissions. However, the largest obstacle towards the deployment of automated vehicles on public roads is their safety evaluation and validation. Undeniably, the role of cameras and Artificial Intelligence-based (AI) vision is vital in the perception of the driving environment and road safety. Although a significant number of studies on the detection and tracking of vehicles have been conducted, none of them focused on the role of vertical vehicle dynamics. For the first time, this paper analyzes and discusses the influence of road anomalies and vehicle suspension on the performance of detecting and tracking driving objects. To this end, we conducted an extensive road field study and validated a computational tool for performing the assessment using simulations. A parametric study revealed the cases where AI-based vision underperforms and may significantly degrade the safety performance of AVs.

Funder

European Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3