Pedestrian and Cyclist Detection and Intent Estimation for Autonomous Vehicles: A Survey

Author:

Ahmed SarfrazORCID,Huda M. Nazmul,Rajbhandari SujanORCID,Saha Chitta,Elshaw Mark,Kanarachos Stratis

Abstract

As autonomous vehicles become more common on the roads, their advancement draws on safety concerns for vulnerable road users, such as pedestrians and cyclists. This paper presents a review of recent developments in pedestrian and cyclist detection and intent estimation to increase the safety of autonomous vehicles, for both the driver and other road users. Understanding the intentions of the pedestrian/cyclist enables the self-driving vehicle to take actions to avoid incidents. To make this possible, development of methods/techniques, such as deep learning (DL), for the autonomous vehicle will be explored. For example, the development of pedestrian detection has been significantly advanced using DL approaches, such as; Fast Region-Convolutional Neural Network (R-CNN) , Faster R-CNN and Single Shot Detector (SSD). Although DL has been around for several decades, the hardware to realise the techniques have only recently become viable. Using these DL methods for pedestrian and cyclist detection and applying it for the tracking, motion modelling and pose estimation can allow for a successful and accurate method of intent estimation for the vulnerable road users. Although there has been a growth in research surrounding the study of pedestrian detection using vision-based approaches, further attention should include focus on cyclist detection. To further improve safety for these vulnerable road users (VRUs), approaches such as sensor fusion and intent estimation should be investigated.

Funder

Coventry University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pedestrian and vehicle behaviour prediction in autonomous vehicle system — A review;Expert Systems with Applications;2024-03

2. Latest Advancements in Perception Algorithms for ADAS and AV Systems Using Infrared Images and Deep Learning;Digital Image Processing - Latest Advances and Applications [Working Title];2023-12-07

3. Multi-scale pedestrian intent prediction using 3D joint information as spatio-temporal representation;Expert Systems with Applications;2023-09

4. Multi-attention network for pedestrian intention prediction based on spatio-temporal feature fusion;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-08-02

5. Deer in the headlights: FIR-based Future Trajectory Prediction in Nighttime Autonomous Driving;2023 IEEE Intelligent Vehicles Symposium (IV);2023-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3