Landslide Susceptibility Assessment Using an Optimized Group Method of Data Handling Model

Author:

Kadirhodjaev Azam,Rezaie FatemehORCID,Lee Moung-JinORCID,Lee SaroORCID

Abstract

Landslides can cause considerable loss of life and damage to property, and are among the most frequent natural hazards worldwide. One of the most fundamental and simple approaches to reduce damage is to prepare a landslide hazard map. Accurate prediction of areas highly prone to future landslides is important for decision-making. In the present study, for the first time, the group method of data handling (GMDH) was used to generate landslide susceptibility map for a specific region in Uzbekistan. First, 210 landslide locations were identified by field survey and then divided randomly into model training and model validation datasets (70% and 30%, respectively). Data on nine conditioning factors, i.e., altitude, slope, aspect, topographic wetness index (TWI), length of slope (LS), valley depth, distance from roads, distance from rivers, and geology, were collected. Finally, the maps were validated using the testing dataset and receiver operating characteristic (ROC) curve analysis. The findings showed that the “optimized” GMDH model (i.e., using the gray wolf optimizer [GWO]) performed better than the standalone GMDH model, during both the training and testing phase. The accuracy of the GMDH–GWO model in the training and testing phases was 94% and 90%, compared to 85% and 82%, respectively, for the standard GMDH model. According to the GMDH–GWO model, the study area included very low, low, moderate, high, and very high landslide susceptibility areas, with proportions of 14.89%, 10.57%, 15.00%, 35.12%, and 24.43%, respectively.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3