Metabolic and Functional Interactions of H2S and Sucrose in Maize Thermotolerance through Redox Homeodynamics

Author:

Li Xiao-Er123,Zhou Hong-Dan123,Li Zhong-Guang123

Affiliation:

1. School of Life Sciences, Yunnan Normal University, Kunming 650092, China

2. Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650092, China

3. Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming 650092, China

Abstract

Hydrogen sulfide (H2S) is a novel gasotransmitter. Sucrose (SUC) is a source of cellular energy and a signaling molecule. Maize is the third most common food crop worldwide. However, the interaction of H2S and SUC in maize thermotolerance is not widely known. In this study, using maize seedlings as materials, the metabolic and functional interactions of H2S and SUC in maize thermotolerance were investigated. The data show that under heat stress, the survival rate and tissue viability were increased by exogenous SUC, while the malondialdehyde content and electrolyte leakage were reduced by SUC, indicating SUC could increase maize thermotolerance. Also, SUC-promoted thermotolerance was enhanced by H2S, while separately weakened by an inhibitor (propargylglycine) and a scavenger (hypotaurine) of H2S and a SUC-transport inhibitor (N-ethylmaleimide), suggesting the interaction of H2S and SUC in the development of maize thermotolerance. To establish the underlying mechanism of H2S–SUC interaction-promoted thermotolerance, redox parameters in mesocotyls of maize seedlings were measured before and after heat stress. The data indicate that the activity and gene expression of H2S-metabolizing enzymes were up-regulated by SUC, whereas H2S had no significant effect on the activity and gene expression of SUC-metabolizing enzymes. In addition, the activity and gene expression of catalase, glutathione reductase, ascorbate peroxidase, peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and superoxide dismutase were reinforced by H2S, SUC, and their combination under non-heat and heat conditions to varying degrees. Similarly, the content of ascorbic acid, flavone, carotenoid, and polyphenol was increased by H2S, SUC, and their combination, whereas the production of superoxide radicals and the hydrogen peroxide level were impaired by these treatments to different extents. These results imply that the metabolic and functional interactions of H2S and sucrose signaling exist in the formation of maize thermotolerance through redox homeodynamics. This finding lays the theoretical basis for developing climate-resistant maize crops and improving food security.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3