Effects of the Interaction between Rumen Microbiota Density–VFAs–Hepatic Gluconeogenesis on the Adaptability of Tibetan Sheep to Plateau

Author:

Yang Wenxin1,Sha Yuzhu1ORCID,Chen Xiaowei1,Liu Xiu1ORCID,Wang Fanxiong1,Wang Jiqing1ORCID,Shao Pengyang1ORCID,Chen Qianling1,Gao Min1,Huang Wei1

Affiliation:

1. Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China

Abstract

During the adaptive evolution of animals, the host and its gut microbiota co-adapt to different elevations. Currently, there are few reports on the rumen microbiota–hepato-intestinal axis of Tibetan sheep at different altitudes. Therefore, the purpose of this study was to explore the regulatory effect of rumen microorganism–volatile fatty acids (VFAs)–VFAs transporter gene interactions on the key enzymes and genes related to gluconeogenesis in Tibetan sheep. The rumen fermentation parameters, rumen microbial densities, liver gluconeogenesis activity and related genes were determined and analyzed using gas chromatography, RT-qPCR and other research methods. Correlation analysis revealed a reciprocal relationship among rumen microflora–VFAs-hepatic gluconeogenesis in Tibetan sheep at different altitudes. Among the microbiota, Ruminococcus flavefaciens (R. flavefaciens), Ruminococcus albus (R. albus), Fibrobactersuccinogenes and Ruminobacter amylophilus (R. amylophilus) were significantly correlated with propionic acid (p < 0.05), while propionic acid was significantly correlated with the transport genes monocarboxylate transporter 4 (MCT4) and anion exchanger 2 (AE2) (p < 0.05). Propionic acid was significantly correlated with key enzymes such as pyruvate carboxylase, phosphoenolpyruvic acid carboxylase and glucose (Glu) in the gluconeogenesis pathway (p < 0.05). Additionally, the expressions of these genes were significantly correlated with those of the related genes, namely, forkhead box protein O1 (FOXO1) and mitochondrial phosphoenolpyruvate carboxykinase 2 (PCK2) (p < 0.05). The results showed that rumen microbiota densities differed at different altitudes, and the metabolically produced VFA contents differed, which led to adaptive changes in the key enzyme activities of gluconeogenesis and the expressions of related genes.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Foundation of Gansu Agricultural University

Discipline Team Project of Gansu Agricultural University

Gansu Education Science and Technology Innovation Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3